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An Approach to Analysis of Waveguide Arrays with
Shaped Dielectric Inserts and Protrusions
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Abstract—The classical moment method solution of the wave-
guide-array problem is extended to allow for generally shaped di-
electric matching inserts in the waveguide-to-free-space transition
region. The aperture electric field is represented in terms of wave-
guide modes. To account for the presence of the matching inserts,
the aperture fields are numerically propagated through the dielec-
tric regions. Novel matching configurations, which extend the scan-
ning range of waveguide elements or can be used to shape the el-
ement pattern in limited-scan applications, are proposed and ana-
lyzed.

Index Terms—Matching, phased array, waveguide.

I. INTRODUCTION

T HE related problems of waveguide phased-array matching
and element pattern synthesis have been the subject of con-

siderable research. Many practical approaches for dealing with
the problem have been introduced and theoretical methods to
analyze these have been developed. A partial account of this
area of research can be found in [1]. Of particular interest here
are efforts to address the matching problem by including dielec-
tric inserts–protrusions in the waveguide-to-free-space transi-
tion region. Among them is the early analytical work by Lewis
et al. [2], [3] on protruding dielectric slabs. In the Russian lit-
erature, analogous contemporaneous developments are cited in
the paper by Skobelevet al. [4], which presents a numerical
method for dealing with shaped protruding dielectric elements.
The formulation described by Skobelevet al.appears to be suit-
able for two-dimensional (2-D) scalar problems in which the
feeding waveguide is uniformly filled. In many situations of
practical interest, the dielectric intruding into the guide may be
shaped [6] and a general approach is needed to analyze dielec-
tric matching transformers, which intrude/protrude into both the
waveguide and free space. The purpose of this paper is to present
a methodology that can uniformly deal with both the waveguide
and free-space portions of the problem and is ultimately appli-
cable to three–dimensional (3-D), as well as 2-D, geometries.

II. FORMULATION

A graphical statement of the problem is presented in Fig. 1.
The configuration is a periodic structure of open-ended par-
allel-plate waveguides (PPWs) of heightspaced a distance

Manuscript received October 11, 1999. This work was supported by the Air
Force Office of Scientific Research Directorate of Academic and International
Affairs under the Window on Europe Program.

The author is with the Air Force Research Laboratory/SNHA, Hanscom AFB,
MA 01731-3010 USA.

Publisher Item Identifier S 0018-9480(01)01077-8.

Fig. 1. Periodic array of parallel-plate waveguides with a general dielectric
distribution in the waveguide-to-free-space transition region.

apart. The elements are excited with a constant progressive
phase increment between adjacent unit-mag-
nitude sources, where is the free-space propa-
gation constant and is the scan angle measured from broad-
side. A generally shaped dielectric distribution is included in
the waveguide-to-space transition regions. The problem is 2-D
(independent of the-coordinate) and the fields are taken to be

to simulate -plane scan conditions. This commonly used
2-D analog possesses the most important physical attributes of
the more practical 3-D problem [3]. Moreover, the 2-D formu-
lation is algebraically simpler and, therefore, permits a clearer
presentation of its analytical and numerical properties. It should
also be noted that of the two possible 2-D formulations, namely,

- and -planes, the former is expected to have more severe
convergence requirements due to the discontinuous nature of the
normal electric-field component at dielectric–air interfaces.

The parameters of interest for the stated problem will be ob-
tained by analyzing a single unit cell of the underlying periodic
structure, shown in Fig. 2. It is assumed throughout that the di-
electric inhomogeneity is confined to a finite interval
along the -axis. Following the standard moment method ap-
proach, the problem volume is decomposed into two regions
connected by the waveguide aperture
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Fig. 2. Unit cell of the array decomposed into two regions to facilitate a
moment method formulation.

. Roman numerals I and II are used to identify quantities as-
sociated with the PPW and the unit-cell waveguide (UCW) vol-
umes, respectively. Placement of oppositely directed equivalent
magnetic currents on both sides of a perfect electric conductor
(PEC) screen stretching across the aperture ensures the conti-
nuity of the total tangential electric field ,
while imposition of the same condition on the total magnetic
field yields the following formal integral equation statement:

(1)

equivalent aperture magnetic current;
magnetic field excited in the PPW by the
source in the presenceof the dielectric,
with the aperture covered with a PEC;
magnetic field excited in the UCW by the
source in the presenceof the dielectric,
with the aperture covered with a PEC;
source magnetic field excited in the PPW by
the incident TEM modein the presenceof the
dielectric, with the aperture covered with a
PEC.

After introducing a basis set and
the expansion , where are to be de-
termined, the approximate solution to (1) is obtained by the
Galerkin technique [5]. The resulting set of linear equations can
be written as

(2)

where the following definitions apply:

(3a)

(3b)

(3c)

(4)

Thus far, the steps taken toward the solution of the problem
have been conventional. Moreover, if the configuration at hand

were reduced to the two commonly encountered cases, namely,
those in which the PPW and/or UCW were filled uniformly or
with -invariant stratified dielectrics, the solution could proceed
along the usual path. Briefly, this would entail the derivation of
Green functions for the two regions, using the eigenspectra of
transverse modes, followed by the evaluation of the magnetic
fields as convolutions of the sources with the re-
spective Green function and concluded with the field testing in
(3). In principle, this approach can be extended to more general
dielectric distributions, as was done in [3], by deriving eigen-
modes for nonuniformly filled UCW/PPW cross sections. How-
ever, in all but the most basic 2-D configurations, the eigen-
mode problem itself is very challenging and intensive, particu-
larly when the filled waveguide cross sections vary as functions
of the propagation axis variable. An alternate, more direct, and
practicable method of evaluating is proposed and
studied here. The analysis will be carried out in detail for Re-
gion II (UCW). The derivation for the PPW is completely anal-
ogous and will be given minimal discussion. For convenience
and clarity, the region identifier will be suppressed during the
following derivation.

The mathematical relations governing fields excited by the
source in Region II are

(5a)

(5b)

(5c)

subject to the boundary conditions

(5d)

(5e)

with the addition of the radiation condition for . Note,
anticipating subsequent numerical developments, the surface
magnetic current source was incorporated into the mathemat-
ical formulation as a boundary condition.

The problem presented in (5) will be solved by adapting and
generalizing, to include sources and UCW, a technique used to
evaluate reflection/transmission characteristics of dielectric dis-
continuities in waveguides. Proposed by Schelkunoff [7] and
subsequently elaborated in, among others, [8], the technique
makes use of the empty waveguide mode spectrum as a basis
for representing the transverse variation of the fields in the in-
homogeneously filled waveguide. The field dependence on the
longitudinal variable generally must be determined numerically.

Following the prescription, the Floquet modes of the air-filed
UCW are introduced first:

(6a)

(6b)
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(6c)

It can be shown that the modes in (6) satisfy the following or-
thogonality conditions:

(7a)

(7b)

where the dagger “” denotes adjoint quantities, e.g.,
, and is the Kronecker symbol.

Let the transverse-to--field components in (5) be expanded
in a sum of Floquet harmonics with unknown coefficients

as

(8a)

(8b)

where it follows via (5b), (6c), and the definition
that

(9)

The major step in the derivation requires several straightfor-
ward, but cumbersome, algebraic manipulations, namely,

• substitution of (8) and (9) into (5a) and (5c);
• multiplication of (5a) and (5c) by and ,

respectively;
• summation of the two equations;
• integration of the result over the UCW cross section and

application of (7a).
These procedures reduce the problem to a coupled set of or-

dinary differential equations (ODEs), with the longitudinal co-
ordinate as the independent variable

(10)

where , prime indi-
cates differentiation with respect to, and the newly introduced
quantities are defined as follows:

(11a)

(11b)

(11c)

The reduction of the formulation in (5) is completed with the
addition of the necessary boundary conditions. First, it should
be noted the Floquet-periodicity requirement in (5d) is naturally
satisfied through the choice of the Floquet mode basis for field
representation. The boundary condition in (5e) and the radiation
condition for are addressed next. To reduce the former
of these to the proper form, a series of steps, analogous to those
used to obtain (10), is carried out. The steps are as follows.

Step 1) Substitution of (8b) into (5e).
Step 2) Multiplication of the result by .
Step 3) Integration over the UCW cross section and applica-

tion of (7b).
The resulting expressions are written as follows:

(12)

(13)

Finally, since the fields are expressed in terms of incoming and
outgoing waves traveling along the-direction, the radiation
condition takes on a particularly simple form

(14)

where it is recalled is the location beyond which the in-
homogeneity disappears and, therefore, no reflected (-going)
waves are generated.

The ODE set (10), (12), and (14) taken together constitutes a
well-posed two-point boundary value problem for the unknown
coefficients . In general, this problem can be solved by
numerical means only. Under certain condition, e.g., weak cou-
pling, asymptotic techniques may be applicable.

An analogous derivation has been performed to find the field
in Region I (PPW). To introduce the notation for future

reference, let the modes of homogeneously filled PPW be given
by

(15a)

(15b)

(15c)



358 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 2, FEBRUARY 2001

The fields excited in the PPW containing a dielectric inhomo-
geneity by a source can be expressed as follows:

(16a)

(16b)

The ODE set for the coefficients is formally
obtained from (10) and (11) via the substitutions

.
The boundary conditions are obtained using the same substi-
tution with two additional minor modifications, namely, the
omission of the minus sign in front of in (12) and the
replacement of the radiation condition (14) by ,
where it is assumed that the inhomogeneity starts at , as
indicated in Fig. 2.

The evaluation of the source field term , defined in (1), is
needed in order to complete the derivation. Let the unit-ampli-
tude TEM mode, distinguished by the index “0,” be incident in
the PPW. The source fields expansions are formally identical to
(17), i.e.,

(17)

etc., where the superscript on refers to the source field.
In accordance with the definition of the source field, the coef-
ficients are determined by the same ODE set as the field

with boundary condition replaced by

(18)

(19)

The solution is completed by returning to the moment method
formulation and expressing (3) in terms of the derived field
quantities. Thus,

from which it follows:

(20)

(21)

(22)

with

(23)

(24)

After the linear system (2) is solved for the expansion coef-
ficients , the engineering descriptors of the antenna element,
namely, the incident wave reflection coefficientand the ele-

ment gain pattern can be computed by means of the fol-
lowing formulas:

where

III. SPECIFICEXAMPLES

The formulation presented in the preceding section was com-
pletely general—applicable to arbitrary dielectric distributions.
The theory will now be put to the test by application to several
specific dielectric arrangements. The first two were previously
analyzed by other techniques [3], [4] and are used here for pur-
poses of theoretical verification.

Referring to Fig. 2, let the PPW be centered within the unit
cell, such that , and be com-
pletely filled with material of relative dielectric constant. Let
the protrusion into the UCW be made of the same material and
be symmetrically distributed with respect to the UCW center
line. The dielectric distribution may be defined as follows:

(25)

where is a profile or shape function. The PPW
modes will be used in all the forthcoming cases as the basis for
the expansion of the aperture electric field, i.e.,

(26)

Upon substituting (25) and (26) into the formulation and car-
rying out the calculus, the following set of equations are ob-
tained:

(27a)

(27b)

where
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Fig. 3. Convergence study of the input reflection coefficient for a fixed scan
angle (� = 5 ) as a function of the number of apertures expansion modes
(N ) and Floquet harmonics in the UCW region (N ). The unit cell
parameters are [3, Fig. 3]a=� = 0:535; b=a = 0:432; " = 2:56; p(z) =
b=2; z = � =2.

and . Note,
the UCW mode spectrum has now been truncated at for
computational purposes.

The moment method elements now become

(28a)

(28b)

(28c)

where and the reflection coeffi-
cient is simply

(29)

The example at hand will now be addressed from the numerical
standpoint to ascertain the accuracy and convergence properties
of the analytical method used. The data found in the cited liter-
ature will be used as standards of reference. Two inherent con-
vergence parameters, namely, the number of aperture expansion
functions/PPW modes ( ) and the total number of Floquet
(UCW) modes ( ), will be controlled. The
element configuration assumed for this purpose is that of [3,
Fig. 3], with

. The convergence behavior of the magnitude
of the input reflection coefficient for a fixed scan angle
( as a function of , with serving as a param-
eter, is inferred from Fig. 3. It is observed that for a fixed ,

relaxes to a constant value after a relatively small number of
basis functions is included. On the other hand, if is held
constant, the changes in the reflection coefficient become prac-
tically negligible after the value is exceeded. No
pronounced relative convergence effects are observed. In Fig. 4
the gain pattern as a function of the scan anglefor the same el-
ement is presented and compared with graphically obtained data
from [3, Fig. 3]. Very good agreement is observed; likewise, for

Fig. 4. Comparison of the element gain pattern computed for the element in
Fig. 3 with data from [3, Fig 3].

Fig. 5. Comparison of computed element field pattern and input reflection
coefficient with data from [4, Fig. 8].

Fig. 5, which shows the computed results for the element ana-
lyzed in [4, Fig. 8] (the profile function for this element is cum-
bersome and is not reproduced here).

The computational properties of the presented method are
largely determined by the numerical integration of the ODE set
(10), (12), and (14). This operation was carried out using the
IMSL1 routine “BVPFD,” which is based on a variable-order
variable step-size finite-difference method with adaptive grid
control. Consequently, the solution is highly robust and reliable,
although the overhead associated with adaptive iterations slows
it down somewhat. The program execution times for the data
presented here are in the range of 20–35 s of CPU time per fre-
quency/scan angle on a 266-MHz Pentium II machine.

It has been amply demonstrated that dielectric matching ele-
ments, be they sheets, as in [6] or slabs, analyzed in [3], when
positioned close to the aperture, where fields are strongest, are
apt to excite spurious trapped waves that have been directly

1Visual Numerics Inc., Houston, TX.
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(a) (b)

(c) (d)

Fig. 6. (a) Geometry of an element with scan performance improved by dielectric protrusions. All dimensions are in free-space wavelengths at 3.0 GHz.(b)–(d)
Comparison of the scanning characteristics for the dielectric-matched and unmatched element in Fig. 6(a) at: (b) 2.0, (c) 2.5, and (d) 3.0 GHz.

linked to undesired element pattern nulls. This means, as con-
cluded in [3], that these types of configurations are not useful
for wide-angle matching. However, as shown next, there are di-
electric matching structures that may be suitable for this pur-
pose. The particularly simple one considered here was obtained
by choosing to move the protrusions into the regions of the unit
cell where the fields are weaker, and the dielectric can modify
the inter-element coupling and, thus, the element pattern in more
subtle and controllable ways. Consider the element defined by
the following dielectric distribution:

(30)

This configuration, shown in Fig. 6(a), is distinguished from
(25) by the absence of a dielectric in the PPW and the place-
ment of the protrusions close to the boundaries of the UCW. The

formulas and definitions (27) apply with two minor changes,
namely, the elimination of from the definition of the modal
impedances in the PPW and the substitution

, where is the Kronecker delta. The element di-
mensions at 3 GHz are

. The reflection coef-
ficient and element pattern for the unmatched and matched cases
are compared in Fig. 6(b)–(d) for excitation frequencies of 2.0,
2.5, and 3.0 GHz, respectively. It is clear that the dielectric in-
serts cause a significant extension in the scan range. Moreover,
no undesired scan blindness is observed.

As a last example, the problem of designing a limited-scan el-
ement is considered. The unit-cell and waveguide dimensions,

, are the same as in [4, Fig. 8]. The di-
electric distribution empirically designed to provide the desired
element radiation pattern is shown in Fig. 7(a). The dielectric in-
sert intrudes into both the PPW and UCW. The element pattern
computed for this example is displayed in Fig. 7(b), alongside
the pattern synthesized in [4, Fig. 8] for the same waveguide
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(a)

(b)

Fig. 7. (a) Geometry of an element suitable for limited scan. All dimensions
are in free-space wavelengths. (b) Computed gain pattern for the element
defined in Fig. 7(a). The gain pattern for an element with a shaped dielectric
protrusion investigated in [4, Fig. 8] for comparison.

and unit-cell dimensions. A comparison of the two curves re-
veals that the design proposed here yields a significantly better
limited-scan performance.

IV. CONCLUSIONS

A novel method for analyzing waveguide phased arrays with
general dielectric matching inserts in the aperture region has
been presented and studied in this paper. The proposed tech-
nique represents a modification of the classical moment method
solution of the waveguide array and, as such, preserves the key
computational advantage of the latter, namely, the relatively
small order of the final matrix problem. The generalization to
arbitrary dielectric distributions comes at the cost of additional
numerical processing (integration of an ODE set) required to
calculate the fields in the regions containing the dielectric.
For the problem at hand, this cost was not prohibitive. This
can be attributed to the fact that only a few (PPW and UCW)
modes are needed to approximate the fields excited by the

entire domain basis functions chosen to represent the unknown
aperture distribution.

Matching of waveguide elements by means of dielectric in-
serts has been deemed impractical, as previous studies have
tied them to scan blindness. Using physical reasoning, a new
matching configuration has been proposed here. Computed re-
sults indicate a significant scan range enhancement and no un-
desirable effects. Generalization of the analysis to allow for in-
homogeneous dielectrics in the feeding waveguide has also led
to a new way for synthesizing element patterns for limited-scan
applications.
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