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An Approach to Analysis of Waveguide Arrays with
Shaped Dielectric Inserts and Protrusions
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Abstract—The classical moment method solution of the wave- Z 19

guide-array problem is extended to allow for generally shaped di- —

electric matching inserts in the waveguide-to-free-space transition

region. The aperture electric field is represented in terms of wave- %E%GC{JEI]BEE a %ﬂ%ggg&
guide modes. To account for the presence of the matching inserts, warg, WALL
the aperture fields are numerically propagated through the dielec- \I j

tric regions. Novel matching configurations, which extend the scan- %))
ning range of waveguide elements or can be used to shape the el- ‘ »
ement pattern in limited-scan applications, are proposed and ana- S o !
Iyzed. RN S

Index Terms—Matching, phased array, waveguide. ié(x,i)
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. INTRODUCTION

HE related problems of waveguide phased-array matchir
and element pattern synthesis have been the subject of c &
siderable research. Many practical approaches for dealing w ~—b—
the problem have been introduced and theoretical methods é
analyze these have been developed. A partial account of tl
area of research can be found in [1]. Of particular interest he +jkyo @ 1 —jkyo @
are efforts to address the matching problem by including diele € UNIT
tric inserts—protrusions in the waveguide-to-free-space tran: AMPLITUDE
tion region. Among them is the early analytical work by Lewis oo
et al.[2], [3] on protruding dielectric slabs. In the Russian lit-
erature, analogous contemporaneous developments are citeelginl. Periodic array of parallel-plate waveguides with a general dielectric
the paper by Skobelest al. [4], which presents a numerica] distribution in the waveguide-to-free-space transition region.
method for dealing with shaped protruding dielectric elements. ) ) )
The formulation described by Skobeleval. appears to be suit- apart_. The elements are excited with a cqnstant progressive
able for two-dimensional (2-D) scalar problems in which thBhase incremerit,oa = koa sin 6 between adjacent unit-mag-
feeding waveguide is uniformly filled. In many situations offitude sources, wherk, = w./2o/i0 iS the free-space propa-
practical interest, the dielectric intruding into the guide may Htion constant and is the scan angle measured from broad-
shaped [6] and a general approach is needed to analyze diefige. A gen_erally shaped dlel_e_ctrlc dl_strlbuuon is mclud_ed in
tric matching transformers, which intrude/protrude into both tH8€ waveguide-to-space transition regions. The problem is 2-D
waveguide and free space. The purpose of this paper is to pre$élgependent of thg-coordinate) and the fields are taken to be
amethodology that can uniformly deal with both the waveguidEE t0 simulatek-plane scan conditions. This commonly used
and free-space portions of the problem and is ultimately app%:D analog possesses the most important physical attributes of

cable to three—dimensional (3-D), as well as 2-D, geometriegh® more practical 3-D problem [3]. Moreover, the 2-D formu-
lation is algebraically simpler and, therefore, permits a clearer

presentation of its analytical and numerical properties. It should
also be noted that of the two possible 2-D formulations, namely,
A graphical statement of the problem is presented in Fig. - and H-planes, the former is expected to have more severe
The configuration is a periodic structure of open-ended pajonvergence requirements due to the discontinuous nature of the
allel-plate waveguides (PPWs) of heightspaced a distance normal electric-field component at dielectric—air interfaces.
The parameters of interest for the stated problem will be ob-
tained by analyzing a single unit cell of the underlying periodic
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N

were reduced to the two commonly encountered cases, hamely,
Ucw @ those in which the PPW and/or UCW were filled uniformly or
with z-invariant stratified dielectrics, the solution could proceed
along the usual path. Briefly, this would entail the derivation of
Green functions for the two regions, using the eigenspectra of
transverse modes, followed by the evaluation of the magnetic
fields H)-1/(M;) as convolutions of the sources with the re-
spective Green function and concluded with the field testing in
(3). In principle, this approach can be extended to more general
dielectric distributions, as was done in [3], by deriving eigen-

Zp— modes for nonuniformly filled UCW/PPW cross sections. How-
PPW ever, in all but the most basic 2-D configurations, the eigen-

@ mode problem itself is very challenging and intensive, particu-
)I{W }Icu larly when the filled waveguide cross sections vary as functions

of the propagation axis variabte An alternate, more direct, and
Fig. 2. Unit cell of the array decomposed into two regions to facilitate practicable method of evaluating;: U(M,) is proposed and
moment method formulation. . . . Y - . .

studied here. The analysis will be carried out in detail for Re-

| d d to identi » ion Il (UCW). The derivation for the PPW is completely anal-
0)}. Roman numerals | and Il are used to identify quantities zégous and will be given minimal discussion. For convenience

sociated with the PPW and the unit-cell waveguide (UCW) VOl ciarity, the region identifier will be suppressed during the
umes, respectively. Placement of oppositely directed equwal%ﬂowing derivation.

magnetic currents on both sides of a perfect electric conductor-l-he mathematical relations governing fields excited by the
(PEC) screen stretching across the aperture ensures the C%ﬁ.ifrceM,» in Region Il are
nuity of the total tangential electric field 4 = E,[(z, z) € A], !

while imposition of the same condition on the total magnetic OE,(x,z) OE(z,7) . I 5
field yields the following formal integral equation statement: 9z B dx = —Jwpolly(z, 2) (52)
Hj, +Hj(M,)=H,"(-M,), (z,2)eA (1) % = jwe(z, 2)E.(x, z) (5b)
X
M = FE 4 equivalent aperture magnetic current; OH,(z, z)

Y )
HI(M,) magnetic field excited in the PPW by the 5, —Jwdz, 2)Eu(z, 2)  (5¢)
sourceM, in the presencef the dielectric, ] -
with the aperture covered with a PEC; subject to the boundary conditions
I e oo '
H,/'(-M,) magnetic flgld excited in the UCW by.the F(z +a, 2) = Flz, z)e— ko0
source— M, in the presencef the dielectric,

with the aperture covered with a PEC,; F=E,, Bz, Hy (5d)
H! source magnetic field excited in the PPW by _ [ M=),  (z,2)€A
ys e . E.(z,0)= (5e)
the incident TEM modén the presencef the 0, (z,2)¢gA

glélgctnc, with the aperture covered with &ith the addition of the radiation condition far — cc. Note,
. . o . anticipating subsequent numerical developments, the surface
After mtrqducmg a baiiféﬂwj’ 7=12 ..., Npr}and magnetic current source was incorporated into the mathemat-
the expansion/, = Zj:l V;M;, whereV; are to be de- ical formulation as a boundary condition.

termingd, the gpproximate soluti_on to (1) 'is obtained_ by the-l-he problem presented in (5) will be solved by adapting and
Galerkin technique [5]. The resulting set of linear equations Cﬁ'éneralizing, to include sources and UCW, a technique used to

beAWr't‘e” as N evaluate reflection/transmission characteristics of dielectric dis-
= = . tinuities in waveguides. Proposed by Schelkunoff [7] and
VY VYl =1; i=12.. N con ; :
221 i 221 17 ’ PSS BB subsequently elaborated in, among others, [8], the technique
= = @) makes use of the empty waveguide mode spectrum as a basis
for representing the transverse variation of the fields in the in-

where the following definitions apply: homogeneously filled waveguide. The field dependence on the

va = — (M, Hj(Mj» (3a) longitudinal variable generally must be determined numerically.
Vil =(M;, H)'(—M;)) U(:F\(/)Jlowing the prescr_ipti.on, the Floquet modes of the air-filed
Ir are introduced first:
= —(M;, H, (My)) (3b) o
ISi = <MZ7 H55> (3C) HyUTl(‘Tv Z) = hyo’n(x)ei‘]' on®
_ 1 —Jken® —jBonZ
(P, Q) 2/ PQdx. 4) _%@ J e—J (6a)
A

. _ —JBanz
Thus far, the steps taken toward the solution of the problem Eoon(, 2) = €aon(x)e™ '
have been conventional. Moreover, if the configuration at hand = thym(x)e_f"’mz (6b)
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Jon (11b)

rvm

o= e by () ()

Ko7 (2) = / 0 602, 2)Cnpn(E)elym(z).

vm (11C)

The reduction of the formulation in (5) is completed with the
addition of the necessary boundary conditions. First, it should
be noted the Floquet-periodicity requirement in (5d) is naturally
satisfied through the choice of the Floquet mode basis for field
representation. The boundary condition in (5e) and the radiation
condition forz — oo are addressed next. To reduce the former
of these to the proper form, a series of steps, analogous to those

It can be shown that the modes in (6) satisfy the following Ojseq 1o obtain (10), is carried out. The steps are as follows.

thogonality conditions:

/ dx[eWUﬂ(x)hzunl(x) + hyUn(x)eIwrn(x)] = 2Z0"67n"6”‘7
0
(7a)
/0 dz emn(x)hzym(x) = Zonbmn
(7b)

where the dagger{” denotes adjoint quantities, e.g, . =
[exvm(Bom — Bi)]F, andé,,, is the Kronecker symbol.

Let the transverse-te-field components in (5) be expandeq:ina”y

Step 1) Substitution of (8b) into (5e).

Step 2) Multiplication of the result by}, ().

Step 3) Integration over the UCW cross section and applica-
tion of (7b).

The resulting expressions are written as follows:

[Pin(0) =P (0)] Zy = — L,  m € {0,41,42, ...}
(12)
Ly = <MJ('T)7 hzu'rn(x)>' (13)

since the fields are expressed in terms of incoming and

in-a sum of Floquet harmonics with unknown coefficientgigoing waves traveling along thedirection, the radiation

P,,(z) as

Hy(xv Z) = Z-Pon(z)hyon(x) (8a)

E.(z, z)= ZP,,,,,(z)em,m(a:) (8b)

where it follows via (5b), (6c), and the definition(z, z)
e(x, #)/eo that

EZ(.’IZ', Z) = ﬁ Z P,,n(Z)GZ,Tn(.’IZ').

o,n

9)

. . o . . I
The major step in the derivation requires several stralghtfdpr-

ward, but cumbersome, algebraic manipulations, namely,
substitution of (8) and (9) into (5a) and (5¢);
multiplication of (5a) and (5c) by}, (z) andef,,,,
respectively;

summation of the two equations;

(),

application of (7a).

These procedures reduce the problem to a coupled set of or-
dinary differential equations (ODEs), with the longitudinal co-

ordinatez as the independent variable

2ZVsz//m(z)
1
- Pcrn < . 1(1777711 2) —J Jl(frrr:l ©
57 o) gy TE) = o )
—jwsoK;’;xz)} (10)

wheres, v € {+, —}, m, n € {0, +1, +2, ...}, prime indi-
cates differentiation with respect tpand the newly introduced
gquantities are defined as follows:
“ g 1 Ohyen
Jon (Z) _ / d |: by
0

vm O ez, z) Ox

<x>} Wo(@) (11a)

integration of the result over the UCW cross section and

condition takes on a particularly simple form

P_,(z) =0, m € {0, 1, 2, ...} (14)
where it is recalledt = z. is the location beyond which the in-
homogeneity disappears and, therefore, no reflecteefoing)
waves are generated.

The ODE set (10), (12), and (14) taken together constitutes a
well-posed two-point boundary value problem for the unknown
coefficientsP,,,(»). In general, this problem can be solved by
numerical means only. Under certain condition, e.g., weak cou-
ing, asymptotic techniques may be applicable.

An analogous derivation has been performed to find the field
Hj(Mj) in Region | (PPW). To introduce the notation for future
reference, let the modes of homogeneously filled PPW be given

by

Hyon(, 2) =Ryon ()9
2 — bon o
- b . cos [%(w — a:,w)} o i€onz
(15a)
Ea:on(x, Z) :emon(aj)@*ifanz
= Zo’nhyon(x)e_jfﬂnz (15b)
EZ(T'n,(-/L', Z) :ez(rn(x)e_jfanz
1 Ohyon
= Jome 0w DO (150)
n=012 . 0=+ -
2
&r 2 ;
= = £,n
Zon = Son
wep



358 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 2, FEBRUARY 2001

The fields excited in the PPW containing a dielectric inhomawnent gain patterg(¢) can be computed by means of the fol-

geneity by a sourcé; can be expressed as follows: lowing formulas:
Ngpr
H, y 2) = an\~ h, oan 16a s J
y(, 2) ; Qon(z)hyon () (16a) R(z) =Qo(a) + Y Vi@ o(a)
E 7 16b =
(0022 2 Qoo () ae o(6) = |To(0)] cos 6
1 where
Ez(xv Z) = m ;Qon(z)ezon(‘x)' , Z+0 Ner ) 2
iy . To(8)]" = ¢ 5 | D ViPlo(=)
The ODE set for the coefficients),,(z) is formally Zio =
obtained from (10) and (11) via the substitutions kzo=ko sin 0.
{Pa ﬁona Zcrna Cxon, hyo’n} a— {Qa So’na Zo’na Cron, hyo’n}-
The boundary conditions are obtained using the same substi- [ll. SPECIFICEXAMPLES

tution with two additional minor modifications, namely, the pe formylation presented in the preceding section was com-
omission of the minus sign in front af.,, in (12) and the jetely general—applicable to arbitrary dielectric distributions.
replacement of the radiation condition (14) &.m (%) = 0,  The theory will now be put to the test by application to several
where it is assumed that the inhomogeneity startsatz,, as  gpecific dielectric arrangements. The first two were previously

indicated in Fig. 2. analyzed by other techniques [3], [4] and are used here for pur-
The evaluation of the source field tetHng, defined in (1), is poses of theoretical verification.

needed in order to complete the derivation. Let the unit-ampli- Referring to Fig. 2, let the PPW be centered within the unit
tude TEM mode, distinguished by the index “0,” be incident igell, such that:,, = (a — b)/2, x,, = (a + b)/2, and be com-
the PPW. The source fields expansions are formally identicalptetely filled with material of relative dielectric constaant Let
(17), i.e., the protrusion into the UCW be made of the same material and
be symmetrically distributed with respect to the UCW center
Hy(z, 2) = Z Q. (2)hyen(T) (17) line. The dielectric distribution may be defined as follows:

e(x, )

In accordance with the definition of the source field, the coef- €rco, z € [a/2 = p(2), a/2+ p(2)]; 2z € [0, 2]
ficients 2, are determined by the same ODE set as the field co, x¢[a/2-p(2), a/2+p(z)]; % €0, ]
H!(M;) with boundary condition replaced by (25)
[Q%m(0) — Q°,,(0)] =0, me{0,1,2, ...} (18) Wherep(z)(<a/2) is a profile or shape function. The PPW
R modes will be used in all the forthcoming cases as the basis for
Qhm(21) = bmo- (19) the expansion of the aperture electric field, i.e.,
The solution is completed by returning to the moment method [2 = Soi—1) (i—1)r
formulation and expressing (3) in terms of the derived field M:(z) = 3 @ [7(37 - ww)} )

b
guantities. Thus,

etc., where the superscript @, refers to the source field. {61*607 T € [#w, zu]; 2 € (00, 0]

, T € [Ty, Tu], t€{1,2,..., Ngr}. (26)
Hy(a, 2) = Z Qo (#)hyon () Upon substituting (25) and (26) into the formulation and car-
7 rying out the calculus, the following set of equations are ob-

Hy(M;) =" Q) (2)hyon(x) tained: ’ |
an (Pl) (2) = > Tom(2) P (2) (27a)
H) (Mj) =" Pl (2)hyon() 5"

from which it follows: [P ' ) 2Z4m
Li=>Y_ Q3,0 (20) Pl (2)=0
o, n where
Y= -2 Q00 (1) Ton(2)==iBembmndrs
o) [ 55 (221} <52 - )
. . mn\Z) |J — - —J] Q=& —
Vi ==Y PL(OD; (22) 2Bum \e&r 2
o . [2%(71 - m)p(z)}
simp | ——
i —m a
Wi 4 fon(2) = (~1)"
After the linear system (2) is solved for the expansion coef- “ k2, — <ﬂ)
ficients V;, the engineering descriptors of the antenna element, b

namely, the incident wave reflection coefficieRtand the ele- s Remaf2 (mikemb/2 _(_1)icikemb/2)
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Fig. 3. Convergence study of the input reflection coefficient for a fixed scdrig. 4. Comparison of the element gain pattern computed for the element in
angle § = 5°) as a function of the number of apertures expansion modé&sg. 3 with data from [3, Fig 3].

(Nsr) and Floguet harmonics in the UCW regioW £). The unit cell
parameters are [3, Fig. 3/ Ao = 0.535, b/a = 0.432, &, = 2.56, p(z) = 1
b/2, ze = Xo/2.

ando, v € {+, —}, m, n € {0, £1, £2, ..., £Npg}. Note, 0.8
the UCW mode spectrum has now been truncateielgt-,; for

. &
computational purposes. =07
The moment method elements now become 50.6

S

Ay
I =26, (28a) 305

o3
Vi =Y46; (28b)  zos

i i £
Y=Y FL.(0D; (28c)  Zos

whereY, = 1/Z,,; = (weoe,./&4;) and the reflection coeffi-
cient is simply

0 1 1 i .y 1
WENE, 0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
RO)=1-2"""v,. (29)

£+0 sin®

: :Fig. 5. Comparison of computed element field pattern and input reflection
The exa_mple at hand.wnl now be addressed from the numerlg fficient with data from [4, Fig. 8].
standpomt to ascertain the accuracy and convergence properties

of the analytical method used. The data found in the cited Iitq;

ature will be used as standards of reference. Two inherent core: 5, which shows the computed results for the element ana-

zed in [4, Fig. 8] (the profile function for this element is cum-
vergence parameters, namely, the number of aperture expangfon

functions/PPW modes\z ) and the total number of Floquet ersome and is not reproducgd here).
— . The computational properties of the presented method are
(UCW) modes ¥V pir = 2Npp + 1), will be controlled. The . L .
. i ) ; rgely determined by the numerical integration of the ODE set
element configuration assumed for this purpose is that of 0), (12), and (14). This operation was carried out using the
Fig. 3], witha/\o = 0.535, b/a = 0.432, &, = 2.56, p(z) = » \L4), : P 9

l H " ” 1 H 1 -
b/2, . = Xo/2. The convergence behavior of the magnitudleMSL routine “BVPFD,” which is based on a variable-order

. : A ) variable step-size finite-difference method with adaptive grid
of the input reflection coefficientR| for a fixed scan angle T .

R ) s : control. Consequently, the solution is highly robust and reliable,
(6 = 5%) as afunction oV, With Ny SEIVING &S a param- 0 the overhead associated with adaptive iterations slows
eter, is inferred from Fig. 3. It is observed that for a fix@g g, 9 P

| R| relaxes to a constant value after a relatively small number'g)fdown somewhat. _The program execution times fqr the data
basis functions is included. On the other handV§  is held presented here are in the range of 20-35 s of CPU time per fre-

constant, the changes in the reflection coefficient become prgg_ency/scan angle on a 266-MHz Pentium Il machine.

. . — . It has been amply demonstrated that dielectric matching ele-
tically negligible after the valuévrg =~ 25 is exceeded. No ) .
. .ments, be they sheets, as in [6] or slabs, analyzed in [3], when
pronounced relative convergence effects are observed. In Fig. 4 . !
) ; ositioned close to the aperture, where fields are strongest, are
the gain pattern as a function of the scan afdtar the same el-

ement is presented and compared with graphically obtained d%% to excite spurious trapped waves that have been directly

from [3, Fig. 3]. Very good agreement is observed; likewise, for visual Numerics Inc., Houston, TX.
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Fig. 6. (a) Geometry of an element with scan performance improved by dielectric protrusions. All dimensions are in free-space wavelengths @i)3@GHz.
Comparison of the scanning characteristics for the dielectric-matched and unmatched element in Fig. 6(a) at: (b) 2.0, (c) 2.5, and (d) 3.0 GHz.

linked to undesired element pattern nulls. This means, as céormulas and definitions (27) apply with two minor changes,
cluded in [3], that these types of configurations are not usefahmely, the elimination of,. from the definition of the modal

for wide-angle matching. However, as shown next, there are dinpedances in the PPW and the substitufign (z) — 8, —
electric matching structures that may be suitable for this pufs..(#), whereé,,,, is the Kronecker delta. The element di-
pose. The particularly simple one considered here was obtaimeensions at 3 GHz are/\, = 0.535,b/Xg = 04, ¢, =

by choosing to move the protrusions into the regions of the uBi0625, p(z)/Ao = 0.227, 2. /Ao = 0.375. The reflection coef-

cell where the fields are weaker, and the dielectric can modifigient and element pattern for the unmatched and matched cases
the inter-element coupling and, thus, the element pattern in mare compared in Fig. 6(b)—(d) for excitation frequencies of 2.0,
subtle and controllable ways. Consider the element defined By, and 3.0 GHz, respectively. It is clear that the dielectric in-
the following dielectric distribution: serts cause a significant extension in the scan range. Moreover,
no undesired scan blindness is observed.

As a last example, the problem of designing a limited-scan el-
ement is considered. The unit-cell and waveguide dimensions,
afA = 0.9, b/X\g = 0.3, are the same as in [4, Fig. 8]. The di-

€0, @ € [a/2 = p(2), a/2+p(2)]; 2 € [0, z]. electric distribution empirically designed to provide the desired

(30)  element radiation pattern is shown in Fig. 7(a). The dielectric in-

This configuration, shown in Fig. 6(a), is distinguished frorgert intrudes into both the PPW and UCW. The element pattern
(25) by the absence of a dielectric in the PPW and the plag@mputed for this example is displayed in Fig. 7(b), alongside
ment of the protrusions close to the boundaries of the UCW. Ttiee pattern synthesized in [4, Fig. 8] for the same waveguide

e(x, z)
€o, Z € [Ty, Tul; 2 € (—00, 0]
=4 &0,  xE[a/2-p(2), a/2+p(2)]; » € [0, 2]
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Element Gain Pattern

Computed /

05
sin®

(b)

220 I . ; |
0 0.1 02 03 04

Fig. 7.

(a) Geometry of an element suitable for limited scan. All dimensions
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entire domain basis functions chosen to represent the unknown
aperture distribution.

Matching of waveguide elements by means of dielectric in-
serts has been deemed impractical, as previous studies have
tied them to scan blindness. Using physical reasoning, a new
matching configuration has been proposed here. Computed re-
sults indicate a significant scan range enhancement and no un-
desirable effects. Generalization of the analysis to allow for in-
homogeneous dielectrics in the feeding waveguide has also led
to a new way for synthesizing element patterns for limited-scan
applications.
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